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Supplementary Note
DC power-flow model
In this paper, we made use of the “DC power flow” linearization of the full nonlinear power flow equations in our model
of cascading failures. Here, we briefly describe the derivation of this common, although imperfect, simplification. For a
more detailed discussion of the DC power-flow equations and their limitations, see refs S1, S2.

Consider a node (“bus” in power systems terminology) k that is connected to node m via a transmission line, which
has series resistance rkm and reactance xkm = ωlkm, where ω is the frequency of the sinusoidal current and lkm is the
series inductance of the line. r and x can be combined to form a complex impedance zkm = rkm + jxkm, in which (by
electrical engineering notational tradition) j =

√
−1. The inverse of this impedance is known as an “admittance,”

and is defined as follows: 1/zkm = ykm = gkm + jbkm, where g and b are known, respectively, as the conductance and
susceptance of the line. The sinusoidal voltages at nodes k and m will each have an amplitude (V ) and a phase shift (θ ,
relative to some reference), and can thus be represented with complex numbers Ṽk =Vke jθk and Ṽm =Vme jθm . Note that
voltages Vk, and consequently all other units, are normalized to dimensionless units, using the ‘per-unit’ system, such
that 1.0 indicates a nominal value. With these definitions, we can define the complex current Ĩ and power S̃flowing out
from k to m as:

Ĩkm = ykm(Ṽk−Ṽm) (S1)

S̃km = ṼkI∗km = Ṽk(Ṽ ∗k −Ṽ ∗m)y
∗
km (S2)

where x∗ indicates the complex conjugate of x. With some manipulation of equations (S1) and (S2), we can find the
active (P) and reactive (Q) power flowing from k to m as follows:

Pkm =V 2
k gkm−VkVm(gkm cosθkm +bkm sinθkm) (S3)

Qkm =−V 2
k bkm−VkVm(gkm sinθkm−bkm cosθkm) (S4)

where θkm = θk−θm is the phase angle difference between k and m. If we assume that the voltage amplitudes Vk and Vm
are at their nominal levels, that we have normalized ykm such that this nominal level is 1.0 (common practice), and that
the resistance rkm is small (nearly zero) relative to the reactance xkm (a reasonable assumption for bulk power systems),
then gkm ∼= 0, and Pkm becomes:

Pkm ∼=−bkm sinθkm =
1

xkm
sinθkm (S5)

If we assume that θkm is small, then sinθkm ∼= θkm and we get:

Pkm ∼=
1

xkm
θkm (S6)

If we furthermore assume that Qkm = 0 (not a particularly good assumption), then the current magnitude and the power
are equal, |Ikm|=Pkm, and we can use equation (S6) to roughly simulate power flows in a power system.

In order to solve for the flows Pkm in simulation, we put equation (S6) into matrix form as follows. Let A denote
the line-to-node incidence matrix with 1 and −1 in each row indicating the endpoints of each line, θ be the vector
of voltage phase angles, X be a diagonal matrix of line reactances, and Pflow be a vector of active power flows along
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transmission lines. Then, we can solve for the vector of power flows Pflow given that we know the vector of voltage
phase angles θ as shown in the following:

A>θ = XPflow (S7)

Pflow =
[
X−1A>

]
θ (S8)

In order to solve for θ , we use information about the sources (generators) and sinks (loads) to build a vector of net
injected powers (generation minus load), P. Given P, we can solve the following to find θ :

P= APflow =
[
AX−1A>

]
θ = Bθ (S9)

The matrix B is known as the bus susceptance matrix, and has the properties of a weighted graph Laplacian matrix
describing the network of transmission lines, where the link weights are the susceptances bkm = 1/xkm.

Comparing PN/2 to P∞

In this paper, we measured the impact of disturbances of various sizes, f , on the probability of at least half of the
network remaining within the “giant component” (GC) after the resulting cascade had subsided: PN/2; or the probability
of half of the load still being served after the cascade completed: PD/2. An alternative way to measure the impact of
the disturbances is to measure the average cascade size (sometimes known as the yield), rather than the probability of
a cascade in a given size range. Indeed, after random removal of f N nodes from the network, N0 = (1− f )N nodes
remain in the GC, and the cascade of failures results in gradual fragmentation of the network, leading to a reduction in
the number of nodes in the GC until a post-cascade steady state is reached. At this point, we calculated the ratio of the
number of nodes remaining within the end-state GC, N∞, to the size of the network after the initial removal of nodes,
N0, and measured the average cascade size, 〈N∞/N0〉, across a set of samples. This measure would be more analogous
to the P∞-metric that is commonly used in the literature on phase transitions in percolation systems. We chose not to use
P∞ as our primary measure of network robustness since the modeling assumptions described in the above discussion of
“DC power flow” become particularly inaccurate for very large cascades. Essentially, P∞ would, in many cases, average
over small numbers that were not particularly accurate.

However, the results that one obtains by measuring the average cascade impact do not lead one to substantially
different conclusions than those reported in the paper (aside from the fact that the transitions are much more gradual).

Supplementary Figure S1 compares the response of various networks to random failures using the P∞- and PN/2-
measures for the topological contagion and power grid models. For the power grid model, the relative robustness of
the five network structures is unchanged. The lattice is the most vulnerable and the scale-free network is the most
robust. In the topological model, the P∞-measure indicates that the power grid, random graph, random regular, and
scale-free networks have similar levels of robustness, for f < 0.15. The lattice remains to be the most vulnerable of the
five network structures.

Supplementary Figure S2 compares the response of various coupled models to random failures with different levels
of coupling between the power and communications network. In this case, we compare the original metrics used in
the paper (i.e., PN/2 and PD/2) to P∞. Our analogous measure of robustness for the three smart grid models is 〈D∞/D〉:
the average ratio of the amount of demand (load) served at the end of the cascade to the original load, which amounts
to 24.5725 GW. The results for the three different smart grid models are not substantially changed. We still see that
increased coupling increases robustness in both the Ideal and the Intermediate Smart Grid models, whereas coupling is
detrimental (though only slightly) in the Vulnerable Smart Grid model. For the Coupled Topological model, coupling is
detrimental to robustness; indeed, by measuring the results using both P∞ and PN/2, the decrease in performance with q
is monotonic.

50% coupling results
To better understand the impact of the level of coupling, we recomputed the results shown in Supplementary Fig. S4
using 50% coupling, i.e., q = 0.5.
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Network vulnerability indices
One way to compare the various topological configurations and models described in this paper is to convert the sigmoidal
results shown in Supplementary Figs S3 and S4 into a single metric of robustness (or conversely, vulnerability). To
quantify the effects of topology, physics, and coupling among different synthetic networks, we define the network
vulnerability index (β ) as follows:

β =− log
∫ 1

0
PGC( f ) d f (S10)

≈− log
{

1
2L

L−1

∑
`=1

PGC( f`)+PGC( f`+1)

}
(S11)

where f is the initiating failure size; L is the total number of f values simulated; and PGC = PN/2 is the probability of
observing a GC whose size is more than half the number of grid nodes. The β -values corresponding to five network
structures and six models of cascading studied in this paper are aggregately displayed in a bar chart in Supplementary
Fig. S5.

Sensitivity analysis on λ

Sensitivity of the three smart grid models with respect to the weight vector λ using various levels of coupling ranging
from q = 0 to q = 1 is displayed in Supplementary Fig. S6. This analysis is carried out using our load-based P∞-measure,
in which the ratios of the amount of post-cascade power, D∞, to the precascade load amount, D, are averaged across the
same 1,000 initial outage sets of failure size f = 0.05, as in other cases. It is clearly seen that the choice of the weight
vector, λ , of unavoidable overloads has only negligible impact on the values of the chosen robustness metric, 〈D∞/D〉.

Supplementary References
S1. Stott, B., Jardim, J. & Alsac, O. DC power flow revisited. IEEE Trans. Power Syst. 24, 1290–1300 (2009).

S2. Gómez-Expósito, A., Conejo, A. J. & Cañizares, C. (eds.) Electric Energy Systems: Analysis and Operation (CRC
Press, Baco Raton, FL, 2009).
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Supplementary Figures
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Supplementary Figure S1. The response of cascading models to random node failures. Simple model of
topological contagion (a,c) and our power grid model (b,d). (a,b) show the response using the PN/2-measure used in
the paper. (c,d) show the response using the average size of the post-cascade giant component, 〈N∞/N0〉.
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Supplementary Figure S2. The robustness of the Polish power grid topology, when coupled to a
communication network, for two different models and two different measures of robustness, as a function of
the level of internetwork coupling, q. (a,b,d,e) show results for the four power grid models, whereas (c,f) show the
Coupled Topological model. (a–c) measure robustness using the PD/2- and PN/2-measures, as in the main paper,
whereas (d–f) use measures that are more analogous to P∞.
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Supplementary Figure S3. Comparison of the robustness for all six of the models considered in this paper.
(a) Single-network, topological cascading, (b) single-network, power-flow-based cascading, (c) Ideal, (d) Intermediate,
(e) Vulnerable, and (f) Coupled Topological cascading model. In all of the coupled models, the grid and communication
nodes are assumed to be perfectly coupled, i.e., q = 1.
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Supplementary Figure S4. Comparison of robustness results for the four coupled network models, with
50% coupling, q = 0.5. The models are the (a) Ideal, (b) Intermediate, (c) Vulnerable, and (d) Coupled Topological
cascading model.
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Supplementary Figure S5. Network vulnerability indices, β , for different models of cascading for the fully
coupled (q = 1.0) and half-coupled (q = 0.5) cases. (a) shows the simple topological cascading model; (b) shows the
uncoupled power grid; (c–e) show the three smart grid models; and (f) shows the Coupled Topological model.
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Supplementary Figure S6. Sensitivity of the three Smart Grid models to the overload weight vector, λ , for
overloads that cannot be eliminated through changes to generators and loads for the Polish power grid. The
〈D∞/D〉-results shown herein are produced using three different uniform weight vectors (i.e., with λi = 50,100,200),
varying levels of coupling from q = 0 to q = 1, and a failure size of f = 0.05.
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