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Abstract

Many complex systems, from power grids and the internet, to the brain and society,
can be modeled using modular networks. Modules, densely interconnected groups
of elements, often overlap due to elements that belong to multiple modules. The
elements and modules of these networks perform individual and collective tasks such as
generating and consuming electrical load, transmitting data, or executing parallelized
computations. We study the robustness of these systems to the failure of random
elements. We show that it is possible for the modules themselves to become isolated
or uncoupled (non-overlapping) well before the network falls apart. When modular
organization is critical to overall functionality, networks may be far more vulnerable
than expected.
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Complex networks have recently attracted much interest due to their prevalence in nature
and our daily lives [3, 21]. A critical network property is its resilience or robustness to random
breakdown and failure [4, 11, 9, 12], typically studied as a percolation problem [27, 1, 10, 24],
or cascading failures [16, 8, 23]. Meanwhile, most networks are modular [14, 20], comprised
of small, densely connected groups of nodes. The modules often overlap, with elements
belonging to multiple modules [22, 2]. Existing work on robustness has not considered the
role of modular structure.

Consider a system of interacting elements representing computers, power generators, neu-
rons, etc. These elements perform tasks sufficiently complex that they must work together
in densely interconnected modules. These tasks may be parallelized computations, pro-
tein biosynthesis, or higher-order neurological functions such as visual processing or speech
production. Elements are required to communicate between modules, so that modules are
coupled or overlapping, and the system functions properly only when modules can commu-
nicate. We ask how these networks respond when a random fraction of elements fail: do the
modules become uncoupled before the network loses global connectivity? Random failures
provide a toy model of, e.g., a traumatic brain injury or degenerative disease. If enough
elements fail, the modules can no longer communicate (higher brain functions are lost) even
though the network may remain connected (simpler autonomic responses persist). Likewise,
an individual module may fail if too many of its member elements cease to function.

Modular structure can be represented as a bipartite network (Fig. 1a) [18, 19] character-
ized by two degree distributions, rm and sn, governing the fraction of elements that belong
to m modules and the fraction of modules that contain n elements, respectively. The average
number of modules per element is µ ≡

∑
mmrm and the average number of elements per

module is ν ≡
∑

n nsn. We derive two networks from the bipartite graph by projecting
onto either the elements or the modules: One is the network between elements, while the
other is a network where each node represents a module and two modules are linked if they
share at least one element. The giant component in the element network disappears when
the network loses global connectivity; in the module network it vanishes when the modules
become uncoupled (non-overlapping). Before projection elements fail with probability 1− p
and are removed from the network. Meanwhile, a module is unable to complete its collective
task if fewer than a critical fraction fc of its original elements remain. These failed modules
are removed from the module network but any surviving member elements are not removed
from the element network. See Fig. 1b.

We wish to determine S(p), the fraction of remaining nodes within the giant component
as a function of p, for both the element and module networks. We define four generating
functions [18, 19]:

f0(z) =
∞∑
m=0

rmz
m, f1(z) =

1

µ

∞∑
m=0

mrmz
m−1,

g0(z) =
∞∑
n=0

snz
n, g1(z) =

1

ν

∞∑
n=0

nsnz
n−1.

(1)

These functions generate the probabilities for (f0) a randomly chosen element to belong
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Figure 1: The modular network representation [18, 19]. (a) We obtain two networks by pro-
jecting onto elements or modules. (b) The failure of element 3 induces the failure of module
B, uncoupling the remaining modules, even though the network itself remains connected.

to m modules, (f1) a random element within a randomly chosen module to belong to m
other modules, (g0) a random module to contain n elements, and (g1) a random module of
a randomly chosen element to contain n other elements.

1 Element network

Consider a randomly chosen element A that belongs to a group of size n. Let P (k|n) be the
probability that A still belongs to a connected cluster of k nodes (including itself) in this
group after failures occur:

P (k|n) =

(
n− 1

k − 1

)
pk−1(1− p)n−k. (2)

The generating function for the number of other elements connected to A within this group
is

hn(z) =
n∑
k=1

P (k|n)zk−1 = (zp+ 1− p)n−1 . (3)

Averaging over module size:

h(z) =
1

ν

∞∑
n=0

nsnhn(z) = g1(zp+ 1− p). (4)

The total number of elements that A is connected to, from all modules it belongs to, is then
generated by

G0(z) = f0(h(z)). (5)
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Likewise, the total number of elements that a randomly chosen neighbor of A is connected
to is generated by

G1(z) = f1(h(z)). (6)

Before determining S, we first identify the critical point pc where the giant component
emerges. This happens when the expected number of elements two steps away from a random
element exceeds the number one step away, or

∂zG0(G1(z))
∣∣
z=1
− ∂zG0(z)

∣∣
z=1

> 0. (7)

Substituting Eqs. (5) and (6) gives f ′0(1)h′(1)[f ′1(1)h′(1)− 1] > 0 or f ′1(1)h′(1) > 1. Finally,
the condition for a giant component to exist, since h′(1) = pg′1(1), is

pf ′1(1)g′1(1) > 1. (8)

For the uniform case, rm = δ(m,µ) and sn = δ(n, ν), this gives p(µ− 1)(ν− 1) > 1. If µ = 3
and ν = 3, then the transition occurs at pc = 1/4.

To find S, consider the probability u for element A to not belong to the giant component.
A is not a member of the giant component only if all of A’s neighbors are also not members,
so u satisfies the self-consistency condition u = G1(u). The size of the giant component is
then S = 1−G0(u).

2 Module network

Consider a random module C and then a random member element A. Let Q(`|m) be the
probability that C is connected to ` modules, including itself, through element A, who was
originally connected to m modules including C:

Q(`|m) =

(
m− 1

`− 1

)
q`−11 (1− q1)m−` , (9)

where

q1 =
1

ν

∞∑
n=0

nsn

n∑
i=x

(
n− 1

i− 1

)
pi−1(1− p)n−i. (10)

(Notice that q1 = 1 when x(n) ≡ dnfce = 1 for all n.) The generating function jm for the
number of modules that C is connected to, including itself, through A is

jm(z) =
m∑
`=1

Q(`|m)z`−1 = (zq1 + 1− q1)m−1 . (11)

Once again, averaging jm over memberships gives

j(z) =
1

µ

∞∑
m=0

mrmjm(z) = f1(zq1 + 1− q1). (12)
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The total number of modules that C is connected to is not generated by g0(j(z)) but by
g̃0(j(z)), where the g̃i are the generating functions for module size after elements fail:

g̃0(z) =
∞∑
n=0

s̃nz
n, g̃1(z) =

∑∞
n=0 ns̃nz

n−1∑∞
n=0 ns̃n

. (13)

The probability s̃k to have k member elements remaining in a module after percolation is
given by

s̃k =

∑
n

(
n
k

)
pk(1− p)n−ksn∑

n

∑n
k′=x

(
n
k′

)
pk′(1− p)n−k′sn

. (14)

The denominator is necessary for normalization since we cannot observe modules with fewer
than dnfce members. Notice that s̃n = sn when sn = δ(n, ν) and dnfce = n = ν.

Finally, the total number of modules connected to C through any member elements is
generated by F0(z) = g̃0(j(z)) and the total number of modules connected to a random
neighbor of C is generated by F1(z) = g̃1(j(z)). As before, the module network has a giant
component when ∂zF0(F1(z))|z=1−∂zF0(z)|z=1 > 0 and S = 1−F0(u) = 1− g̃0(j(u)), where
u satisfies u = F1(u) = g̃1(j(u)).

For the uniform case with µ = 3, ν = 3, and fc > 2/3, the critical point for the module
network is pc = 1/2, a considerably higher threshold than for the element network (pc = 1/4).
In Fig. 2 we show S for µ = 3 and ν = 6. The “robustness gap” between the element and
module networks widens as the module failure cutoff increases, covering a significant range
of p for the larger values of fc.

Of particular interest are scale-free networks [7, 28, 21]. Here we take rm = δ(m,µ) as
before, but now sn ∼ n−λ, with λ ≥ 2 1. It is known that scale-free networks are robust to
random failures when 2 < λ < 3 (meaning that pc → 0). However, this result also requires
that the maximum value K of the degree distribution be large (K � 1) [11]. Indeed, as
we lower λ, we discover that, while we increase the robustness of the elements, we actually
decrease the robustness of the modules (Fig. 3). For modular networks, it may not be
feasible to build extremely large modules. Interestingly, enforcing on sn a maximum module
size cutoff N = max{n | sn > 0} only improves element robustness.

3 Empirical results

We study failures in multiple social, biological, and informational real-world datasets (see
App. A). Unlike the model, we do not know the modules in advance, so we estimate them with
an overlapping community algorithm [2] (a second method [22] displays similar behavior).
These networks tend to be smaller than those previously discussed, introducing finite-size
effects that mask the behavior of S. To overcome this, we instead use S ′, the fraction of
original nodes that remain in the giant component (see App. B). As shown in Fig. 4, the

1The degree distribution after projection remains scale-free (with the same exponent), although the
maximum degree may increase.
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Figure 2: The size of the giant component S for rm = δ(m,µ), sn = δ(n, ν), with µ = 3 and
ν = 6. Theory and simulations confirm that the network undergoes a transition from coupled
to non-overlapping modules well before it loses global connectivity. Symbols represent the
element (2) and module (#) networks.

modules fall apart more easily than the elements, qualitatively matching our model across a
broad range of networks.

4 Conclusions

There are a number of interesting avenues for further work. We considered the simplest
case of random failures but extensions to purposeful attacks (failure proportional to n or
m) are also important. Likewise, the model we use assumes that all links exist within
modules, but links between modules are certainly possible. These additional links can only
enhance the robustness of the element network, but will not improve the module network,
so that the robustness gap may be significantly increased. Beyond structural characteristics
of these modular networks it is important to understand the effect of failures and modular
structure on critical phenomena such as synchronization [6, 5], contact processes [15, 26],
cascades [16, 8, 23] or other dynamics [13].

Finally, this work can also help us to understand how empirical networks are affected by
missing data, of critical importance when studying communities. Here p is the probability
that a network element is successfully captured by an experiment, such as a high-throughput
biological assay or web crawler. The robustness gap can explain how non-overlapping com-
munity methods may succeed in networks where overlap is expected: the network is sampled
down to the intermediate regime where nodes are connected but modules are uncoupled.
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Figure 3: Robustness of scale-free networks. Here rm = δ(m, 3), sn ∼ n−λ, fc = 1/2,
and N ≡ max{n | sn > 0}. Increasing N and decreasing λ, measures known to improve
the robustness of scale-free networks, actually magnifies the robustness gap. Surprisingly,
this also increases the fragility of the module network, indicating that optimizing against
structural failure may worsen the network’s functional resilience.
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A Datasets

In this work, we study six empirical networks. The Word Association, Metabolic, and
Protein-Protein Interaction (all) networks were previously used in [2]; details are available
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Figure 4: We simulate failures in a number of real networks, from functional brain networks
to WWW hyperlinks and collaborative social networks. Many of these networks are robust to
random failures (the element networks exhibit very small pc), but all networks The behavior
of the giant component for all the empirical networks qualitatively matches that of the model,
as the identified modules uncouple faster than the network itself. Shaded regions provide a
guide to the eye for the robustness gap (fc = 0.7). For full dataset details, see App. A.

there. The Web Links network is constructed from a web crawl made available by Google;
see http://google.com/programming-contest/. The Collaborations network is constructed
between authors who share at least one publication on the arXiv:cond-mat system [17]. The
Brain network was derived using normal patient fMRI data where each node is a “voxel”
dividing the brain spatially and links exist between voxels whose respective BOLD time
series are correlated (measured using Normalized Mutual Information). We begin with the
top 200k most correlated links. A single voxel had very high degree, k = 0.73N (the next
highest degree is k = 0.096N) so we first remove it. This leaves 5038 nodes and 196311
links. We further preprocess this dense network by extracting its multiscale backbone [25]
(α = 0.37), giving a final network of 5038 nodes and 77680 links. For all networks, link
communities were extracted at the level of maximum partition density [2], providing the
estimated modules.

B Finite-size effects

For the empirical networks analyzed in Fig. 4, we modified our definition of the quantity S
due to finite-size effects. There are two sources for these effects: (i) the number of modules is
often much smaller than the number of elements, so that a small network of a few thousand
elements may only have a few hundred modules; and (ii) the rate at which elements fail
may be slower than the rate at which modules fail (the former is simply given by p but
the latter also depends on sn and fc). We suppress these effects by choosing S with a
well-behaved denominator as p → 0. Specifically, our options are S(p) = Ngcc(p)/N(p) or
S ′ = Ngcc(p)/N(1), where Ngcc(p) is the number of nodes (either elements or modules) within
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Figure 5: For the empirical datasets in Fig. 4, we present here the same data for the original
definition of S, the fraction of remaining nodes within the giant component. For some of the
networks the transition points are more dramatic in this representation, however for many
it is difficult to determine their location due to strong finite-size effects.

the largest component at percolation probability p and N(p) is the total number of nodes at
percolation probability p. The quantity S ′ has better behavior under the above conditions,
although the transition appears less dramatic than it does for S. In Fig. 5 we present the
same as Fig. 4 using the original definition of S.
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