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Abstract

Complex networks have recently attracted much interest due to their prevalence in nature

and our daily lives (Vespignani, 2009; Newman, 2010). A critical property of a network

is its resilience to random breakdown and failure (Albert et al., 2000; Cohen et al., 2000;

Callaway et al., 2000; Cohen et al., 2001), typically studied as a percolation problem (Stauffer

& Aharony, 1994; Achlioptas et al., 2009; Chen & D’Souza, 2011) or by modeling cascading

failures (Motter, 2004; Buldyrev et al., 2010; Brummitt, et al. 2012). Many complex systems,

from power grids and the Internet to the brain and society (Colizza et al., 2007; Vespignani,

2011; Balcan & Vespignani, 2011), can be modeled using modular networks comprised of

small, densely connected groups of nodes (Girvan & Newman, 2002). These modules often

overlap, with network elements belonging to multiple modules (Palla et al. 2005; Ahn et al.

2010). Yet existing work on robustness has not considered the role of overlapping, modular

structure. Here we study the robustness of these systems to the failure of elements. We

show analytically and empirically that it is possible for the modules themselves to become

uncoupled or non-overlapping well before the network disintegrates. If overlapping modular

organization plays a role in overall functionality, networks may be far more vulnerable than

predicted by conventional percolation theory.

Keywords: modular networks, percolation, network resilience, community structure, overlapping

communities

1 Introduction

Consider a system of interacting elements representing computers, power generators,

neurons, office workers, etc. Typically these elements fulfill individual roles in the

network such as regulating power or propagating neuronal signals. Yet in many

systems, global functionality may require elements to also perform collective tasks
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of sufficient complexity that they cannot be completed by single elements. The

elements must instead work closely in teams, forming densely interconnected modules.

These tasks may be parallelized computations, protein biosynthesis, or higher-order

neurological functions such as visual processing or speech production.

Among various ways that modules can communicate or jointly function with

each other, a prominent one is sharing common elements across modules. Such

overlapping elements may result from, e.g. pleiotropy in the genome (Stearns,

2010) or “structural folds” in social systems (Vedres & Stark, 2010). In biological

networks, functional modules often coordinate by sharing common elements. For

instance, the recent yeast protein complex catalogue, with high-quality hand-curated

protein complex data, showed that a significant fraction of proteins belong to

multiple protein complexes (Pu et al., 2009). In functional brain networks, overlap

may indicate regions that integrate, e.g., visual and auditory sensory cues (Kaiser,

2011), while in structural brain networks it was shown that “confluence zones”

that integrate information from other regions tend to participate in multiple

modules (de Reus et al., 2014). In large human organizations, liaison jobs—where

workers coordinate cross-team activities by spending significant time in multiple

teams—are common (Galbraith, 1974). For instance, many companies implement

hierarchical management systems, where a manager oversees several teams. In such

cases, coordination between the teams are arranged mainly by the manager who

works with all the teams, playing the role of the overlapping element. Moreover,

collaboration and management across multiple locations frequently takes the form

of swapping or dispatching personnel across places. Another example is the systems

analyst (Kaiser & King, 1982). Systems analysts help organizations to improve their

information technology offerings by liaising between end users or external vendors

outside the organization and the programming teams of the organization itself.

Similarly, the militaries of many nations have command structures dedicated to

liaising between different military branches during joint operations, including with

the militaries of other countries (Vego, 2009).

Inspired by these examples, we ask how these networks respond when a random

fraction of elements fail: can the modules become uncoupled (i.e. non-overlapping)

before the network loses global connectivity? Random failures provide a general

model of, e.g. a traumatic brain injury or degenerative disease. If enough elements

fail, overlap may be lost and some or all modules may no longer be able to complete

their tasks (higher brain functions are lost) even though the network may remain

connected (simpler autonomic responses persist). Likewise, an individual module

may fail if too many of its member elements cease to function. These effects in

combination may lead to a loss of modular overlap in the system, which by our

simplified assumptions causes impairment to the entire system. See Figure 1 for

an example illustrating how the loss of a random element may cause a module

to fail.

The rest of this paper is organized as follows. In Section 2, we study the robustness

of an analytically tractable model of modular networks (Sections 2.1 and 2.2), as well

as additional models of modules (Section 2.3) and models of how those modules may

respond to random failures and targeted attacks (Section 2.4). Section 3 supports

these results with studies of four empirical network datasets covering very different

research domains. Finally, in Section 4, we discuss the context of this work and
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Fig. 1. Modeling failures in modular networks. We analyze two networks, one representing

the linkages between network elements (a) and a second detailing the overlapping connectivity

between the modules themselves (b). In this example, the failure of element 3 leads to the

loss of module B, since B no longer has sufficient members to complete its collective task.

This causes the module network to become disconnected (bottom) even though the element

network remains connected. (color online)

how it may apply to the practical issue of missing data during the detection of

overlapping and non-overlapping communities in real-world network datasets.

2 Modeling modular networks

Networks with overlapping modular structure can be well modeled with a bipartite

graph, also known as an affiliation network (Wasserman & Faust, 1994). This

network consists of two types of nodes representing the elements and the modules

and undirected links representing which elements belong to which modules. Links

in the bipartite graph only connect element nodes to module nodes. The network

is characterized by two degree distributions, rm and sn, governing the fraction

of elements that belong to m modules and the fraction of modules that contain

n elements, respectively (Newman et al., 2002; Newman et al., 2001; Newman,

2003; Newman & Park, 2003). Links are placed randomly between element and

module nodes respecting these degree distributions (Newman & Park, 2003). The

average number of modules per element is
∑

m mrm ≡ μ and the average number

of elements per module is
∑

n nsn ≡ ν. Using this as a starting point for our

model, we derive two networks from the bipartite graph by projecting onto either

the elements or the modules: One is the network between elements, studied by

Newman (2003) and Newman & Park (2003), while the other is a network where

each node represents a module and two modules are linked if they share at least

one element. The Largest Connected Component (LCC) (also known as the giant

component (Stauffer & Aharony, 1994)) in the element network disappears when, due

to missing elements, the network loses global connectivity; in the module network

it vanishes if the modules become uncoupled (non-overlapping). Before projection

elements fail independently with probability 1−p and are removed from the network.

Meanwhile, a module is unable to complete its collective task if fewer than a critical

fraction fc of its original elements remain. These failed modules are removed from

the module network but any surviving member elements are not removed from the
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element network (Figure 1). This model of element and module failure serves as our

starting point, but we will also explore additional models.

Before we analyze this model, it is important to note that it makes two assumptions

about the modular nature of the system: that all interactions within each module

exist and are equal, and that there are no differences between individual elements

that share a module—i.e. there are no “captains” or “team leaders”. One may expect

that these homogeneous (or “mean-field”) assumptions may limit the applicability

of results derived from this model. However, we argue that, when large numbers of

modules are involved, such microscopic, per-module details are less important to the

macroscopic robustness of the large-scale system than the overall organization of

the network’s modules. That is, an averaged or mean-field model for module failure

captures the most essential elements of many systems’ robustness. Furthermore, we

will present a number of findings that relax these mean-field ingredients.

We wish to determine S(p), the fraction of remaining nodes within the LCC as a

function of p, for both the element and module networks. We use four generating

functions (Newman, 2003; Newman & Park, 2003):

f0(z) =

∞∑
m=0

rmz
m f1(z) =

1

μ

∞∑
m=0

mrmz
m−1

g0(z) =

∞∑
n=0

snz
n g1(z) =

1

ν

∞∑
n=0

nsnz
n−1.

(1)

These functions generate the probabilities for (f0) a randomly chosen element to

belong to m modules, (f1) a random element within a randomly chosen module to

belong to m other modules, (g0) a random module to contain n elements, and (g1) a

random module of a randomly chosen element to contain n other elements.

To analyze this model we now separately study the two projections (the element

and module networks) of the original bipartite graph.

2.1 Element network1

Consider a randomly chosen element A that belongs to a group of size n. Let P (k|n)
be the probability that A still belongs to a connected cluster of k nodes (including

itself) in this group after failures occur:

P (k|n) =

(
n − 1

k − 1

)
pk−1(1 − p)n−k. (2)

The generating function for the number of other elements connected to A within

this group is

hn(z) =

n∑
k=1

P (k|n)zk−1 = (zp + 1 − p)n−1 . (3)

Averaging over module size:

h(z) =
1

ν

∞∑
n=0

nsnhn(z) = g1(zp + 1 − p). (4)

1 This short calculation was presented in Newman (2003) and Newman & Park (2003). We repeat it
here for completeness and to introduce notation used for subsequent calculations.
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The total number of elements that A is connected to, from all modules it belongs

to, is then generated by

G0(z) = f0(h(z)). (5)

Likewise, the total number of elements that a randomly chosen neighbor of A is

connected to is generated by

G1(z) = f1(h(z)). (6)

Before determining S , we first identify the critical point pc where the giant

component emerges. This happens when the expected number of elements two steps

away from a random element exceeds the number one step away, or

∂zG0(G1(z))|z=1 − ∂zG0(z)|z=1 > 0. (7)

Substituting Equations (5) and (6) gives f′
0(1)h′(1)[f′

1(1)h′(1) − 1] > 0 or f′
1(1)h′(1) >

1. Finally, the condition for a giant component to exist, since h′(1) = pg′
1(1), is

pf′
1(1)g′

1(1) > 1. (8)

For the uniform case, rm = δ(m, μ) and sn = δ(n, ν), this gives p(μ − 1)(ν − 1) > 1. If

μ = 3 and ν = 3, then the transition occurs at pc = 1/4.

To find S , consider the probability u for element A not to belong to the giant

component. A is not a member of the giant component only if all of A’s neighbors

are also not members, so u satisfies the self-consistency condition u = G1(u). The

size of the giant component is then S = 1 − G0(u).

2.2 Module network

Consider a random module C and then a random member element A. Let Q(�|m) be

the probability that C is connected to � modules, including itself, through element

A, who was originally connected to m modules including C:

Q(�|m) =

(
m − 1

� − 1

)
q�−1

1 (1 − q1)
m−� (9)

where

q1 =
1

ν

∞∑
n=0

nsn

n∑
i=x

(
n − 1

i − 1

)
pi−1(1 − p)n−i. (10)

(Notice that q1 = 1 when x(n) ≡ �nfc� = 1 for all n.) The generating function jm for

the number of modules that C is connected to, including itself, through A is

jm(z) =

m∑
�=1

Q(�|m)z�−1 = (zq1 + 1 − q1)
m−1 . (11)

Once again, averaging jm over memberships gives

j(z) =
1

μ

∞∑
m=0

mrmjm(z) = f1(zq1 + 1 − q1). (12)
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Fig. 2. The size of the Largest Connected Component S for the element and module networks.

Theory and simulations confirm that the network undergoes a transition from coupled to

non-overlapping modules well before it loses global connectivity. Symbols represent element

(�) and module (�) networks. Here we used rm = δ(m, μ), sn = δ(n, ν), with μ = 3 and ν = 6.

Simulations used 106 elements. (color online)

The total number of modules that C is connected to is not generated by g0(j(z)) but

by g̃0(j(z)), where the g̃i are the generating functions for module size after elements

fail:

g̃0(z) =

∞∑
n=0

s̃nz
n g̃1(z) =

∑∞
n=0 ns̃nz

n−1∑∞
n=0 ns̃n

. (13)

The probability s̃k to have k member elements remaining in a module after

percolation is given by

s̃k =

∑
n

(
n
k

)
pk(1 − p)n−ksn∑

n

∑n
k′=x

(
n
k′
)
pk

′
(1 − p)n−k′

sn
. (14)

The denominator is necessary for normalization since we cannot observe modules

with fewer than �nfc� members. Notice that s̃n = sn when sn = δ(n, ν) and �nfc� =

n = ν.

Finally, the total number of modules connected to C through any member elements

is generated by F0(z) = g̃0(j(z)) and the total number of modules connected to a

random neighbor of C is generated by F1(z) = g̃1(j(z)). As before, the module

network has a giant component when ∂zF0(F1(z))|z=1 − ∂zF0(z)|z=1 > 0 and S =

1 − F0(u) = 1 − g̃0(j(u)), where u satisfies u = F1(u) = g̃1(j(u)).

For the uniform case with μ = 3, ν = 3, and fc > 2/3, the critical point for the

module network is pc = 1/2, a considerably higher threshold than for the element

network (pc = 1/4). In Figure 2, we show S for μ = 3 and ν = 6. The robustness

gap, the difference between the critical points for the element and module networks,

grows as the module failure cutoff increases, covering a significant range of p for

the larger values of fc.

Of particular interest are scale-free networks (Barabási & Albert, 1999; Newman,

2010). Here we take rm = δ(m, μ) as before, but now sn ∼ n−λ, with λ � 2. (The

degree distribution after projection remains scale-free, with the same exponent,

although the maximum degree may increase.) It is known that scale-free networks
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Fig. 3. Robustness of scale-free modular networks. Here rm = δ(m, 3), sn ∼ n−λ, fc = 1/2,

and N ≡ max{n | sn > 0}. Increasing N and decreasing λ, measures known to improve

the robustness of scale-free networks (Cohen et al., 2000), actually magnifies the difference

between the critical points. Surprisingly, this also increases the fragility of the module network,

indicating that optimizing against structural failure may worsen the network’s functional

resilience. Simulations used 105 elements. (color online)

are robust to random failures when 2 < λ < 3 (meaning that pc → 0). However,

this result also requires that the maximum value K of the degree distribution be

large (K � 1) (Cohen et al., 2000). Indeed, as we lower λ, we discover that, while

we increase the robustness of the elements, we actually decrease the robustness of

the modules (Figure 3). Interestingly, increasing the maximum module size cutoff

N = max{n | sn > 0} improves element robustness, but not overall functional

resilience.

2.3 Additional models of modules

Our analytic calculation (Sections 2.1 and 2.2) uses a basic, mean-field model of

modular structure. Specifically, we follow Newman and Park (2003) and represent

the element-element network as the projection of a bipartite graph between elements

and modules. This assumes that each module is fully dense, i.e. that all interactions

within the module are present and of equal strength (hence the mean-field nature).

Due to these assumptions, this network model is tractable, a great strength. Yet while

we expect modules to be unusually dense, it is unlikely that they will universally be

completely dense. However, when considering expected behavior over many modules,

which is the primary factor of the model’s global network robustness, we argue that

such higher-order effects and potential microscopic details are subordinate to gross

modular features when studying global network connectivity.
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Fig. 4. Modules do not need to be completely dense. Here we study the scale-free modular

networks of Figure 3. However, before element failures occur we first delete links inside

modules such that the final density of each module is approximately 1 − ρ. When ρ = 0

we recover the results of Figure 3. We consider two values of fc (top and bottom) and two

scale-free exponents λ (left and right). Closed symbols correspond to element networks, open

symbols to module networks. We see that in most cases the decreased density of modules has

little effect. Only for the more extreme values of ρ do we see a change, which is reasonable

because high values of ρ effectively destroy the modular nature of the network. (color online)

Despite this, understanding how more detailed modular representations affect

network robustness is important. As a first step we relax our assumption of

mean-field intra-modular coupling. Before elements fail (site percolation) we delete

each link in the projected element-element network with a probability ρ (bond

percolation). When ρ = 0 we recover the original mean-field model where every

module is completely dense. For large values of ρ, such as ρ > 0.8 or 0.9, the

modules possess no intrinsic density above that of the overall density, and we recover

a non-modular random graph. What this means is that we now model modules with

approximately Erdös–Rényi graphs. In this pre-percolation phase, an element fails

if it loses all its neighbors. Such elements are removed from the element-element

network and they are counted as element failures towards the modules.

We study the robustness of these networks in Figure 4. We observe that ρ has

little if any influence on the relative robustnesses of the two networks, over a range

of parameters. This provides further evidence that our results do not pathologically

depend on the mean-field nature (all-to-all coupling) of the underlying model. We

return to the importance of module density when we discuss our empirical results

in Section 3.
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2.4 Additional models of module failures

We proposed a basic, mean-field model for how modules can fail. Instead of

considering the microscopic details of each module, we assumed that a module

requires a critical fraction fc of its original member elements to remain, regardless

of which particular elements actually remain. This was done for the sake of analytic

tractability, yet there are numerous other models one can study, typically of greater

complexity. For example, certain modules may possess distinct critical structure in

such a way that the module may continue to function so long as one key element

remains, regardless of how many other elements have failed. But failure of that one

element will invariably cause the module to fail.

As a first step towards exploring such alternative models of module robustness,

consider the following. Instead of requiring a critical fraction fc of elements for a

module to function, we now consider a module to remain if it has at least x > 0

elements remaining. This absolute number is now independent of the original size

of the module. We can study this analytically using nearly the same calculation

presented in Section 2.2; we need only replace x(n) = �nfc� with x = const. In

Figure 5, we study the robustness of the scale-free modular networks considered in

Figure 3 under this new failure criterion. We see that, while the critical point of

the module-module network does vary, it remains different from the critical point

of the corresponding element-element network for the most parameter values. The

primary change being that increasing the maximum module size does improve the

robustness of the module network, when the scale-free exponent λ < 3.

In addition to random failure, seminal network studies also considered attacks

where certain nodes—the high-degree hubs—are more likely to fail. We again study

the robustness of the scale-free network systems in Figure 3 but now elements fail

with probability proportional to their degree in the element-element network. We see

in Figure 6 that these attacks do shift the locations of both networks’ percolation

critical points, as expected. Yet, the module-module network remains less robust to

attacks than the element-element network. Thus our qualitative results remain for

multiple failure methods, including targeted attacks.

3 Empirical results

We study failures in the following four biological and technological real-world

datasets: A metabolic network, a protein-protein interaction network, a network of

web pages captured by a web crawler, and a brain network captured from fMRI

data. The Metabolic and Protein-Protein Interaction (all) networks were previously

used in Ahn et al. (2010); details are available there. The World Wide Web network

is constructed from a web crawl made available by Google2. Finally, the Brain

network was derived using normal subject fMRI data where each node is a “voxel”

dividing the brain spatially and links exist between voxels with correlated time series.

Full technical details can be found in Mørup et al. (2010). (We preprocessed the

fMRI network to remove spurious connections; see Appendix A for full details.)

2 Google no longer hosts these data, but it remains available at http://snap.stanford.edu/data/web-
Google.html.
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Fig. 5. An alternative failure mode for modular networks. Here modules fail when they have

fewer than x = 4 original member elements remaining. This absolute cutoff size differs from

the relative cutoff model where a fraction fc of the original member elements needed to remain

for the module to remain functional. We see that, despite this very different mechanism for

module failure, the difference in critical points between the two networks remains, supporting

the generality of our results. (a) The size of the largest connected component for the element-

element and module-module networks for a scale-free distribution of module sizes with

scale-free exponent λ = 3. We see that the critical points remain different as we increase the

maximum module size cutoff N. (b) As per panel a but for a broader module size distribution

(λ = 2.5). We see that increasing N can decrease the gap between the element and module

critical points. (c–d) The same networks as in panels (a) and (b) but now we plot the size

of the second largest connected component. This takes a maximum value at approximately

the transition point pc and may more clearly illustrate how the critical points change as N is

varied. (color online)

Unlike the analytical models (Section 2), here we do not know the modules

in advance, so we estimate them with an overlapping community detection algo-

rithm (Ahn et al., 2010). This algorithm works by extracting link communities at the

level of maximum partition density (Ahn et al., 2010), which were then converted to

overlapping node communities to provide the estimated modules. Only communities

with at least three nodes were considered (Ahn et al., 2010). These networks tend to

be smaller than those previously discussed, introducing finite-size effects that mask

the behavior of S (Figure 7). To overcome this, we additionally present S ′, the fraction

of original nodes that remain in the LCC. This slightly different definition behaves

better for very small networks and high failure probabilities (small p) because the

denominator does not go to zero, but the transition at the critical point is not as

dramatic, making it harder to find the critical point. To more clearly demonstrate

that the critical points of element and module networks in the empirical data are

not the same, we also calculate R21, the ratio of the size of the second largest to

largest component (R21(p) tends to peak at the critical point). As shown in Figure 7,

the modules fall apart more easily than the elements, qualitatively matching our

model across a broad range of networks.

In Section 2.3 and Figure 4, we discussed a model of modules that relaxed the need

for them to be completely dense, and showed that the robustness gap between the

element network and module network remained. That we do not require completely
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Simulations used 104 elements. (color online)

dense modules is further supported by the evidence presented here using real-world

networks and their community structure. These module networks are not created

by projecting a bipartite node-community graph. The modules themselves are not

modeled but instead arise naturally from a community detection method. These

detection methods attempt to find dense graphs, but do not impose structural

restrictions. In Figure 8, we present the distribution of module densities—defined as

the fraction of potential links within a module that actually exist—for all modules

of each empirical network. We see that most modules are dense, but not completely

dense: most modules have about two-thirds link density, corresponding to a value

of ρ = 1/3 in our relaxed model. Since the empirical networks show qualitatively

similar relative robustness, this further supports the fact that our results depend on

the presence of dense modules but not on strict forms for those modules.

4 Discussion

We have used an analytically tractable network model to study the robustness of

modular networks to the random failures of elements. By analyzing a second network

detailing the connectivity between modules, we have shown that the overlapping

modular structure of the network is more susceptible to random failures than

expected. As mentioned previously, this modular network model makes mean-field

assumptions about both the nature of the modules and how element failures lead

to module failures. To understand whether these assumptions limit our results, we

studied different models of modules within networks (Section 2.3) and different types
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Fig. 7. Failures in a number of real, modular networks. Many of these networks are robust

to random failures (the element networks exhibit very small pc). The behavior of the largest

connect component for all the empirical networks qualitatively matches that of the model, as

the identified modules uncouple faster than the network itself. (top) Our original definition

of S as the fraction of remaining nodes within the LCC tends to mask the transition for

very small networks, as seen by the upward turn at small p for some of the red curves.

(bottom) We additionally plot S ′, the fraction of original nodes in the LCC. This leads to a

less dramatic transition but also avoids the denominator of S becoming very small. (insets)

Finally, to clearly demonstrate the robustness gap between the two networks, we also show

the ratio R21 of the size of the second largest to largest component (fc = 0.7) as a function

of p, which tends to peak at pc, further illustrating the difference in critical points for the two

networks. (color online)
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Fig. 8. Densities of empirically measured modules. For each of the four empirical datasets,

we compute the distribution of densities for subgraphs corresponding to the modules found

using link communities (Ahn et al., 2010). The density d is defined as the fraction of possible

edges actually found within the module, i.e. m/
(
n

2

)
where m is the actual number of links in

the module and n is the number of nodes. We see that few modules are completely dense,

except for the world wide web network where approximately 40% of modules are fully dense.

Instead most network modules have densities between d = 0.2 and 2/3. This means that the

empirical results shown in Figure 7 do not require fully dense, mean-field modules for lower

modular robustness to be present, further supporting the generality of our results. (color

online)

of module failure mechanisms (Section 2.4) including targeted attacks (Figure 6). In

all cases the presence of modules within the network affects the robustness of the

system.

There are a number of interesting avenues for further work. We considered the

simplest case of random failures but further analysis of purposeful attacks (where,

e.g. elements with more connections are more likely to fail) are also important.

Likewise, the model we use assumes that all links exist within modules, but

links between modules are certainly possible. These additional “weak” links can

only enhance the robustness of the element network, but will not strengthen the

module network, so that the network’s functional resilience does not improve.

Beyond structural characteristics of these modular networks it is important to

understand the effect of failures and modular structure on critical phenomena such

as synchronization (Arenas et al., 2008), contact processes (Sood & Redner, 2005),

cascades (Motter, 2004; Buldyrev et al., 2010; Brummitt et al., 2012) or other

dynamics (Dorogovtsev et al., 2008).

Finally, this work may also help to understand how analyses of empirical networks

are affected by missing data, of critical importance when finding communities, or

empirically discovering modules (Girvan & Newman, 2002). Here p is the probability

that a network element is successfully captured by an experiment, such as a high-

throughput biological assay or web crawler, and the “failure” of a module is now the

inability of a hypothetical or idealized community detection method to discover it due

to the module’s lack of density in the sampled network. In this scenario, our results—

the difference between the critical points of the element and module networks—may

indicate that, if the network is sampled down to the intermediate regime where nodes

are connected but modules are uncoupled, the community overlap in the network will

be underestimated, allowing even non-overlapping community methods to succeed.

Of course, this is a simplified picture and requires further investigation. We do

not know the true community structure and the networks are likely to be already

missing data. Yet, since the existence of strongly overlapping community structure
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has been established in many networks (e.g. Ahn et al., 2010) and as we have shown

that sampling tends to reduce overlap between modules, we argue that community

overlap in real networks is likely to be underestimated.
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A Brain network preprocessing

The Brain network was derived using normal subject fMRI data where each node is

a “voxel” dividing the brain spatially and links exist between voxels whose respective
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Fig. A 1. Extracting the multiscale backbone and link communities of the fMRI brain

network. We track the fraction of nodes and links remaining in the network as a function of

the backbone threshold α. Choose α too small and little of the network remains; too big and

the density is not altered. We see a small window near 0.35 < α < 0.4 where the number of

links drops but the majority of nodes remain. We choose α = 0.37 (indicated) to exploit this.

(inset) Partition density (Ahn et al., 2010) as a function of link dendrogram threshold for the

extracted network. The vertical line denotes the threshold at which the dendrogram was cut

to determine link communities. (color online)

BOLD time series are correlated. We begin with the top 200,000 most correlated

links, measured using mutual information (Mørup et al., 2010). A single voxel had

very high degree, k = 0.73 N (the next highest degree is k = 0.096 N ) so we first

remove it. This leaves 5,038 nodes and 196,311 links.

We further preprocess this dense, weighted network by extracting its multiscale

backbone (Serrano et al., 2009). To do so, we use the Serrano algorithm (2009) with

local heterogeneity significance threshold α = 0.37. To determine this value of α we

use the following approach. The goal of the backbone extraction method is to prune

potentially spurious links by finding significant links while disconnecting few nodes

from the network. If α is too small many nodes will lose all their neighbors since few

links will be significant. Yet if α is too high few links will be pruned since most links

will appear to be significant. Therefore, we wish to choose α such that the density

of links is decreased but few nodes have been removed. In Figure A 1, we plot the

fraction of nodes and the fraction of links remaining in the graph as a function of

α. Indeed, we see a distinct window 0.35 < α < 0.39 where link removals occur but

few nodes have been lost. We choose α = 0.37, a value in the middle of this range

where many links have been removed but nearly all nodes are still present in the

network.

After extracting significant links using the backbone algorithm, the fMRI data is

reduced to a final network of 5,038 nodes and 77,680 links. For the brain network

(and all networks), link communities were extracted at the link dendrogram level of
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maximum partition density (Ahn et al., 2010), providing the estimated modules. As

in Ahn, et al. (2010), only communities with at least three nodes were considered. In

Figure A 1, (inset) we plot the partition density of the Brain network as a function of

the height (or threshold) of the link dendrogram (see Ahn, et al. for details (2010)).

We see a sharp peak at a threshold near the root of the tree, giving a clear indicator

for the most modular component of the network’s link hierarchy.


