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Given a large network, computing statistics such as clustering coefficient, or modularity, is costly for large
networks. When one more edge or vertex is added, traditional methods require that the full �expensive�
computation be redone on this slightly modified graph. Alternatively, we introduce here a new approach: under
modification to the graph, we update the statistics instead of computing them from scratch. In this paper we
provide update schemes for a number of popular statistics, to include degree distribution, clustering coefficient,
assortativity, and modularity. Our primary aim is to reduce the computational complexity needed to track the
evolving behavior of large networks. As an important consequence, this approach provides efficient methods
which may support modeling the evolution of dynamic networks to identify and understand critical transitions.
Using the updating scheme, the network statistics can be computed much faster than re-calculating each time
that the network evolves. We also note that the update formula can be used to determine which edge or node
will lead to the extremal change of network statistics, providing a way of predicting or designing network
evolution rules that would optimize some chosen statistic. We present our evolution methods in terms of a
network statistics differential notation.
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I. INTRODUCTION

Complex networks are useful tools for modeling compli-
cated real life objects and their interactions. Examples in-
clude computer networks, social networks, biological net-
works, etc. �1–6�. Different from the traditional graph theory
approach, which emphasizes microstate quantities of each
node in the network, recently developed statistical methods
�3� allow us to analyze large networks by several important
macroscopic statistics meant to summarize the massive
amount of information required to completely describe the
network. These statistics include such things as degree �num-
ber of connections each node has�, clustering coefficient �1�,
assortativity coefficient �7�, modularity measure �8�, etc. Fast
algorithms �9,10� have been developed to compute these sta-
tistics for any given network, either represented by adjacency
matrix or edge list �11�.

Despite that many real world networks evolve, and even
grow in time, it is only recently that network models have
allowed for this ubiquitous feature. Understanding the evo-
lution of such networks invariably leads quickly to comput-
ing network statistics as they evolve in time �12,13�. In this
regard, for any evolving network, to measure the correspond-
ing evolution of network statistics, the computation based on
static network structure must be done �for the network� at
each time step, resulting in a costly �and perhaps, impracti-
cal� computation. A missing part in the study of evolving
networks is the development of a dynamic algorithm which
updates the statistics rather than recomputing the quantity
from scratch.

In this paper we present an update algorithm based on the
knowledge of existing network structure and the changes to
the network. Our methods allow us to update relevant statis-
tics of a large network by considering only the adjustments
of the network. This philosophy represents a significant the-
oretical advancement in understanding large scale networks
�critical quantities and topological features�, and it also leads
to efficient algorithms for tracking evolution of large scaled
networks in time.

The rest of the paper is organized as follows: In Sec. II,
we review the definition of some network statistics and in-
troduce notation that will be used in the paper for these sta-
tistics. In Sec. III, we derive update formulas for network
statistics upon the change of network structure and compare
the computational complexity to the use of standard meth-
ods. In Sec. IV, we show examples of application of the
update scheme. In Sec. V, we discuss the main results of the
paper and give some overview of potential future research. In
the Appendix, we provide a simplified, algorithmic represen-
tation of our update scheme.

II. DEFINITION AND NOTATION

We represent a network using a graph G= �V ,E� where
V= �1,2 , . . . ,N� is the vertex set and E
= ��i , j� � i and j are connected� is the edge set. Note that for
undirected graphs, if �i , j��E then so is �j , i� �18�. In this
work, we limit ourselves to undirected, unweighted net-
works; their graphs possess a symmetric, binary adjacency
matrix A:

aij = �1, if �i, j� � E;

0, otherwise.
	 �1�

Let M denote the total number of edges in G. Then
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M 

1

2
�E� =

1

2
�A�F

2 =
1

2�
i,j

aij , �2�

where �·� is the cardinality of a set.
Define the neighborhood N�i� of node i as the set of ver-

tices that are adjacent to i, i.e.,

N�i� 
 �j��i, j� � E� = �j�aij = 1� . �3�

Likewise, define the shared neighborhood Nij of nodes i and
j as

Nij 
 N�i� � N�j� . �4�

The degree ki of node i is the number of nodes it connects to

ki 
 �N�i�� = �
j

aij = �
j

aji, �5�

since we limit ourselves to undirected networks.
The clustering coefficient of node i is defined by �1�

Ci 
 
 2�i

ki�ki − 1�
, if ki � 2;

0, otherwise,
� �6�

where �i is the number of triangles that contain i. Then the
average clustering coefficient �19� of the whole network is
simply the average of all Ci’s:

C 

1

N
�

i

Ci. �7�

The assortativity coefficient r, which describes the corre-
lation of the degree of adjacent nodes of a network �7�, is
computed as:

r 


8M �
�i,j��E

kikj − � �
�i,j��E

�ki + kj��2

4M �
�i,j��E

�ki
2 + kj

2� − � �
�i,j��E

�ki + kj��2 =
8Mu − v2

4Mw − v2 ,

�8�

where

u 
 �
�i,j��E

kikj , �9�

v 
 �
�i,j��E

�ki + kj� , �10�

w 
 �
�i,j��E

�ki
2 + kj

2� . �11�

Modularity Q �8� measures the quality of a community
partition and is typically defined as

Q 

1

2M
�
i,j
�aij −

kikj

2M
���gi,gj� =

1

2M
�SA −

1

2M
SP� ,

�12�

where ��gi ,gj�=1 if nodes i and j are in the same group and
zero otherwise, and

SA 
 �
i,j

aij��gi,gj�, SP 
 �
i,j

kikj��gi,gj� . �13�

III. UPDATING SCHEMES FOR STATISTICS UPON
LOCAL INFORMATION

A. Connecting a new node

The operation of adding an edge to a new node can be
decomposed into two successive operations: first, introduce
an isolated node that connects to nothing in the network;
then add an edge between this node and a previously existing
node. In this subsection we discuss the effect of adding an
isolated node, and leave the discussion of adding an edge to

the next subsection. We use ·̃ to represent updated statistics.
�Note: this section provides derivation of update formulas.
For algorithmic representation of this scheme, the reader
should look to the Appendix.�

Since no new edge is introduced, it is easy to obtain the
following updating relations:

Ñ = N + 1, M̃ = M, Ẽ = E , �14�

and

ãij = �aij , if i � N + 1 and j � N + 1;

0, otherwise.
	 �15�

Then for other statistics, we have

k̃i = ki, i � N + 1;

k̃N+1 = 0; �16�

and

C̃i = Ci, i � N + 1;

C̃N+1 = 0, �17�

so that

C̃ =
1

Ñ
�

i

C̃i =
1

N + 1�
i

Ci =
N

N + 1
C . �18�

Similarly, r̃=r since ũ=u, ṽ=v, and w̃=w; and Q̃=Q since

SÃ=SA, and SP̃=SP.

B. Adding an edge between existing nodes

Suppose apq=0 �p�q and p, q are not connected�, we
analyze the impact of connecting p and q on the various
statistics of the network; see Fig. 1 for an example.

The goal is to derive computations that are as inexpensive

as possible. We use ·̃ to represent updated statistics:

Ẽ = E � ��p,q�,�q,p�� , �19�

M̃ = M + �+M = M + 1, �20�

and
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ãij = aij + �+aij = aij + �ip� jq + �iq� jp, �21�

where we use update delta �+ to represent the change for
statistics upon adding an edge to the existing network, and in
the following �− will be used to denote change for statistics
upon deleting an existing edge. We will not explicitly specify
which edge to add or delete in the update delta notation when
there is no confusion.

Based on the above formulas, we can derive schemes for
efficiently updating network statistics.

1. Degree

The change in degree for node i is simply

k̃i = ki + �+ki = ki + �ip + �iq, �22�

where

�+ki = �ip + �iq. �23�

The above formula indicates that the degree changes only for
vertex p and q, so that if one keeps a list of the degree of all
vertices of the network, each update takes only two opera-
tions when a new edge is added.

2. Clustering coefficient

To compute the new clustering coefficient of each node,
and thus the whole network, we need the updated number of
triangles at node i:

�̃ i = 
�i, if i � �p,q� � Npq;

�i + 1, if i � Npq;

�i + �Npq� , if i � �p,q� .
� �24�

Combining this with Eq. �22� and �i=
1
2Ciki�ki−1�, from Eq.

�6�, we have

C̃i =

Ci, if i � �p,q� � Npq;

Ci +
2

ki�ki − 1�
, if i � Npq;

ki − 1

ki + 1
Ci +

2�Npq�
ki�ki + 1�

, if i � �p,q� . �
�25�

Note that whenever the denominator of a fraction is zero, we
define the fraction to be zero, in Eq. �25� and throughout.
This maintains the consistency that Ci=0 if ki�2. Finally,

the average clustering coefficient C becomes C̃=C+�+C
where

�+C =
2

N� �
i�Npq

1

ki�ki − 1�
+ �

i��p,q�
� �Npq�

ki�ki + 1�
−

Ci

ki + 1
�� .

�26�

Note that to update the average clustering coefficient, we
need to keep the clustering coefficient for each node in order
to apply the update formula, which implies an O�N� storage
complexity.

3. Assortativity coefficient

To compute r̃, we need ũ, ṽ, and w̃. The update formula
for u is

ũ = �
�i,j��Ẽ

k̃ik̃ j = �
�i,j��E

k̃ik̃j + 2�kp + 1��kq + 1�

= �
�i,j��Ê

kikj + 2 �
i�N�p�

ki�kp + 1�

+ 2 �
i�N�q�

ki�kq + 1� + 2�kp + 1��kq + 1�

= u + 2� �
i�N�p�

ki + �
i�N�q�

ki� + 2�kp + 1��kq + 1�

= u + �+u . �27�

Here Ê=E \ ��p ,q� , �q , p�� is the edge set that contains all
edges in E but �p ,q� and �q , p� and

�+u = 2� �
i�N�p�

ki + �
i�N�q�

ki� + 2�kp + 1��kq + 1� . �28�

Similarly, we can obtain update the formula for v and w:

ṽ = �
�i,j��Ẽ

�k̃i + k̃j� = v + 4�kp + kq + 1� = v + �+v , �29�

where

�+v = 4�kp + kq + 1� . �30�

For w we have

w̃ = �
�i,j��Ẽ

�k̃i
2 + k̃j

2� = w + �+w , �31�

where

�+w = 6�kp�kp + 1� + kq�kq + 1�� + 4. �32�

FIG. 1. �Color online� Schematic addition of an edge. The origi-
nal graph consists of N=5 nodes �solid circles� and M =6 edges
�solid lines�. We have, for the original graph, the degree vector k
= �2,3 ,3 ,2 ,2�, the triangle vector �= �1,1 ,1 ,0 ,0�, the clustering
coefficient vector C= �1, 1

3 , 1
3 ,0 ,0�, and the average clustering coef-

ficient is 1
3 . After an edge is added between node 2 and node 5

�dashed line�, the above statistics change to k̃= �2,4 ,3 ,2 ,3�, �̃

= �1,3 ,2 ,1 ,2�, C̃= �1, 1
2 , 2

3 ,1 , 2
3 �, and the new average clustering

coefficient becomes 23
30.
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Finally, the new assortativity coefficient can be updated
using

r̃ = r + �+r =
8M̃ũ − ṽ2

4M̃w̃ − ṽ2
=

8�M + 1��u + �+u� − �v + �+v�2

4�M + 1��w + �+w� − �v + �+v�2 .

�33�

4. Modularity

For modularity, we assume that after connecting the nodes
p and q, the partitions gi do not change for any node i. Then
the new modularity measure will be

Q̃ =
1

2M̃
�S̃A −

1

2M̃
S̃P� . �34�

We already have M̃ =M +1; we now derive updating formu-
las for SA and SP. By Eq. �13�, we have

S̃A = SA + �+SA = �
i,j

ãij��gi,gj�

= �
i,j

�aij + �ip� jq + �iq� jp���gi,gj� = SA + 2��gp,gq� ,

�35�

where �+SA=2��gp ,gq�; and

SP̃ = SP + �+SP = �
i,j

k̃ik̃ j��gi,gj�

= �
i,j

�ki + �ip + �iq��kj + � jp + � jq���gi,gj�

= SP + 2�
i

ki���gi,gp� + ��gi,gq��

+ 2���gp,gq� + 1� . �36�

However, computing the sum in Eq. �36� for every update
is expensive. To avoid this, define the following auxiliary
statistics:

Kg 
 �
i

ki��gi,g� �37�

with updating scheme

K̃g = Kg + �+Kg = Kg + ��gp,g� + ��gq,g� �38�

giving

S̃P = SP + �+SP = SP + 2�Kgp
+ Kgq

� + 2���gp,gq� + 1� ,

�39�

where �+SP=2�Kgp
+Kgq

�+2���gp ,gq�+1�.
Finally, combining Eqs. �35� and �39� with Eq. �34� gives

the updating scheme for Q:

Q̃ = Q + �+Q =
1

2�M + 1��SA + 2��gp,gq�

−
1

2�M + 1�
�Sp + 2�Kgp

+ Kgq
� + 2���gp,gq� + 1��� .

�40�

From Eq. �40� one is able to predict whether the modularity
measure Q increases or decreases with the knowledge of
existing partition of the graph as well as the edge to be
added. For example, if there is a preexisting partition of the
graph into two groups, then if a new edge is added in be-
tween the two groups, then �+Q�0, i.e., the modularity will
decrease. On the other hand, if a new edge is added to ver-
tices belonging to the same group, then the modularity in-
creases if the edge is added to the group with smaller total
degree; however, adding an edge within a group does not
necessarily increase Q if the edge is added into a group with
larger total degree; see Fig. 2 as an example.

C. Deleting an existing edge

Now we investigate how network statistics changes when
we delete an existing edge in the network; see Fig. 3 for an
example.

Suppose apq=1 �p�q and p ,q are connected�, and we

delete this edge, �p ,q�� �q , p�, from our edge set E. Using Â
to represent the updated adjacency matrix, and similarly for
other statistics. Then we immediately have

Ê = E \ ��p,q�,�q,p�� , �41�

M̂ = M − 1, �42�

and

âij = aij + �−aij = aij − �ip� jq − �iq� jp. �43�

FIG. 2. �Color online� An example that the modularity actually
decreases when a new edge is added to vertices within the same
group. The dashed oval boxes indicate the preexisting partition of
the graph into two groups. Solid lines are the edges in the original
graph. Before adding the new edge �dashed arrow line�, the modu-
larity is 0.125. After a new edge is added between two vertices in
the same group �solid circles� the updated modularity becomes
0.1235.
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1. Degree

The change in degree for node i is k̂i=ki+�−ki where

�−ki = − �ip − �iq. �44�

2. Clustering coefficient

For the new clustering coefficient, we first obtain the for-
mula for updating the number of triangles containing node i:

�̂ i = 
�i, if i � �p,q� � Npq;

�i − 1, if i � Npq;

�i − �Npq� , if i � �p,q� .
� �45�

Then we obtain the formula for updating Ci:

Ci
ˆ =


Ci, if i � �p,q� � Npq;

Ci −
2

ki�ki − 1�
, if i � Npq;

ki

ki − 2
Ci −

2�Npq�
�ki − 1��ki − 2�

, if i � �p,q� . �
�46�

The average clustering coefficient C is updated by Ĉ=C
+�−C where

�−C = −
2

N� �
i�Npq

1

ki�ki − 1�

+ �
i��p,q�

� �Npq�
�ki − 1��ki − 2�

−
Ci

ki − 2
�� . �47�

3. Assortativity coefficient

The updating formulas for u, v, w are û=u+�−u, v̂=v
+�−v, ŵ=w+�−w, where

�−u = − 2� �
i�N�p�

ki + �
i�N�q�

ki� − 2�kp − 1��kq − 1� ,

�−v = − 4�kp + kq − 1� ,

�−w = − 6�kp�kp − 1� + kq�kq − 1�� − 4. �48�

Then the new assortativity coefficient r̂ is given by

r̂ =
8M̂û − v̂2

4M̂ŵ − v̂2
=

8�M − 1��u + �−u� − �v + �−v�2

4�M − 1��w + �−w� − �v + �−v�2 . �49�

4. Modularity

For modularity, we again assume that the community par-
titions gi are unchanged after disconnecting the edge be-
tween p and q. It follows that

ŜA = SA + �−SA = SA − 2��gp,gq� , �50�

ŜP = SP + �−SP = SP − 2�Kgp
+ Kgq

� + 2���gp,gq� + 1� ,

�51�

where Kg is now updated using

K̂g = Kg + �−Kg = Kg − ��gp,g� − ��gq,g� . �52�

These now define the updating scheme for Q̂= �ŜA

− ŜP /2M̂� /2M̂.
We remark here that the formulas given for the deletion of

an edge can also be used for the removal of a node, by noting
that the operation of removing a node can be decomposed
into removal of edges that node has.

D. On computational complexity

In Table I we compare the computational complexity of
using the updating scheme and regular methods. For the up-
date scheme, we assume that the initial statistics are already
known, so that the update value listed indicates the compu-
tations required to perform a single update to those statistics.
For the standard methods, we note that the operations count
depends on the data structure used to represent the network.
The updating scheme requires O�1� operations to update for
sparse graphs and at most O��k��, which has a significant

FIG. 3. �Color online� Schematic removal of an edge. The origi-
nal graph consists of N=5 nodes �solid circles� and M =7 edges
�solid lines�, with statistics k= �2,4 ,3 ,2 ,3�, �= �1,3 ,2 ,1 ,2�, C
= �1, 1

2 , 2
3 ,1 , 2

3 �, and average clustering coefficient 23
30 . After the edge

between node 2 and node 5 is deleted, the new statistics are k̂

= �2,3 ,3 ,2 ,2�, �̂= �1,1 ,1 ,0 ,0� Ĉ= �1, 1
3 , 1

3 ,0 ,0�, and the new av-
erage clustering coefficient is 1

3 . Note that this is a symmetric op-
eration to the one shown in Fig. 1.

TABLE I. Comparison of computational complexity.

Statistics
Adjacency

matrix
Edge
list

Updating
scheme

Degree �one node� O�N� O��k�� O�1�
Degree �network� O�N2� O��k�N� O�1�
Clustering coefficient �one node� O��k�N� O��k�3� O��k��
Clustering coefficient �network� O��k�N2� O��k�3N� O��k��
Assortativity coefficient O�N2� O��k�N� O��k��
Modularity measure O�N2� O��k�N� O�1�
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advantage compared to regular methods when the graph size
becomes large.

Our primary focus is developing efficient algorithms for
application to problems of dynamic networks, and the com-
putation savings is significant. For example, given a network
of N vertices and M edges, if one edge is added to this
network, the computation of network statistics need to be
remade, using traditional methods �corresponding to columns
2 or 3 in Table I�; on the other hand, our update scheme
provides an efficient way to update these statistics which
requires far less number of operations �corresponding to col-
umn 1 in Table I�.

One may also consider the process of building a network,
which can be viewed simply as an edge-adding algorithm
from a starting set of a graph with N nodes and no edges. It
takes �k�N

2 steps to create the network. The update formulas
for degree and modularity indicate that computing the entire
time sequence of statistics has the same computational com-
plexity as doing the single computation for the final state
�using the edge list�. The formula for clustering coefficient is
more efficient to calculate each value along the way rather
than the single computation of the final state, although we
also need additional storage to track the clustering coefficient
for each node. Computing the entire time vector of assorta-
tivity coefficients requires an additional factor �k� computa-
tions, which is �typically� a minor price.

IV. EXAMPLES OF APPLICATION

In this subsection we show implementation of the above
formula to obtain the evolution of some network statistics.
We will focus on the case of adding edges between existing
nodes, the other two operations will be very similar. The
statistics we will calculate are the degree distribution, aver-
age clustering coefficient, and modularity measure, although
again, the evolution of other statistics can be obtained in the
same manner by using the updating scheme. The evolving
network models we choose are not intended to mimic real-
world nets, but to show the efficiency of the updating
scheme.

A. Evolution of degree and clustering coefficient

In Fig. 4 we show the evolution of degree distribution of
a typical realization of a growing random graph �14�, ob-
tained as follows: start with a random graph of N=1000
nodes, with average degree �k�=10. At each time step, ran-
domly choose two nodes that are not connected, and make an
edge between them, until the average degree of the network

reaches �k�˜ =20. The total number of time steps is 5000,
which is O�N� in this case. Note that using the updating
scheme to obtain the evolution of degree in this case requires
O�N2� �mostly for initial calculation� operations while using
regular method would require O�N3� operations �using the
adjacency matrix�.

In Fig. 5 we show the evolution of average clustering
coefficient of a typical realization of a Barabasi-Albert net-
work �2�. The initial network is a random network with N
=100 vertices and every pair of vertices is connected with

probability p=0.5. Then, 5000 new vertices are added in the
current network successively. Each time a new vertex is in-
troduced, it connects to two preexisting vertices according to
the preferential attachment rule �2�, which corresponds to
two time steps shown in Fig. 5. The update scheme allows us
to efficiently compute the evolution curve shown in Fig. 5,
instead of recomputing the average clustering coefficient at
each time step, which would have raised the computational
requirement by about five orders of magnitude.

B. Evolution of modularity

We start from an initial network with clear partition, con-
structed as follows: generate an empty graph of N vertices,
prescribe a partition of the set �1,2 , . . . ,N� into two groups

(b)(a)

FIG. 4. Evolution of degree distribution of a random growing
network. The number of vertices is 1000 in the network. Initially
the connection probability of any pair of edges is 0.01, by adding
random edges in the network, this probability increases to 0.02 in
the end. We show two views of the evolution of the degree distri-
bution as with respect to the process of add successive random
edges. In the left panel we see that for any given time, the empirical
distribution shows the underlying Poission process, and the peak is
moving to larger degree side as time increases. The right panel
simply provides an alternate view of the same data, providing
clearer visualization of hidden portions of the three-dimensional
surface.

(a) 0 5000 10000
0.1

0.2

0.3

0.4

0.5

time step

C

0 5000 10000
−0.01

−0.005

0

0.005

0.01

time step

∆C

(b)

FIG. 5. �Color online� Evolution of the average clustering coef-
ficient C of a growing Barabasi-Albert network. In the left panel we
show the evolution of the average clustering coefficient C at each
time instance. In the right panel we show the change of average
clustering coefficient �C. Note that to obtain this curve of the evo-
lution of C, we only need to compute C for the initial network once,
which requires O��k�3N� operations, and then adopt our update for-
mula, which requires O��k�� operations per step; while if one uses
direct computation, it would require O��k�3N� to compute each
single step, and is highly inefficient. The structure in the right side
graph is only observable because we compute the change at each
time step and would be obscured if one were to compute the change
over larger time increments.
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such that the group sizes are N1, N2. Randomly connect any
pair of vertices in group 1 with probability p1, and those in
group 2 with probability p2; then randomly connect a vertice
in group 1 to a vertice in group 2 with probability pbetween.
Probability pbetween is chosen to be smaller than p1 and p2,
creating a clear community structure. In our example, we
choose N=1000, with group 1 composed of nodes
�1,…,500�, with the rest of the nodes forming group 2. We let
p1= p2=0.2 and pbetween=0.05. For the evolutionary process,
we add random edges between the groups until the probabil-
ity of connecting in between groups is the same as the prob-
ability of connecting inside the groups �resulting in a com-
pletely random network in the end�. In Fig. 6 we plot, for
three specific time instances, the adjacency matrix of the
graph. As more in-between edges are added, the original par-
tition is less valid �the block diagonal structure becomes
more vague�. Correspondingly, the evolution of modularity
measure is shown in Fig. 7.

V. DISCUSSION AND CONCLUSION

In this paper, we derive update formulas for important
network statistics �degree, clustering coefficient, assortativity
coefficient, modularity� as theoretical and computational
tools for analyzing evolving networks. The update formulas
are based on singe edge or node updating. An arbitrary
change to the graph structured can be viewed as a sequence
of these unitary changes, with statistics updated by sequen-
tial applications of the formulas we present in this paper. We
also show several examples to illustrate the use of the updat-

ing scheme, allowing us to efficiently track the evolution of
network statistics in situations where traditional methods to
compute those statistics would be impractical.

The derivation of the update formula requires that the
statistics depend locally on network structure, for example,
the update formula for clustering coefficient only requires
the knowledge of local information of the vertices that are
going to be connected. It becomes very hard, or maybe even
impossible, to derive the exact update formula for statistics
that depend upon global information of the network, such as
the diameter �14� or the Fiedler vector �15� of the network.
However, the change of some of these global statistics can be
bounded if there is only small change in the graph. For ex-
ample, the change in the spectra and eigenvectors �including
the Fiedler vector� of the graph Laplacian upon adding or
deleting a few edges in the graph may be bounded by well-
known perturbation results such as those in �15,16�. Our
hope is that having introduced the principle, pursuing update
schemes for other statistics might provide fruitful research
that yields additional tools for analysis of evolving networks.
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APPENDIX: ALGORITHMS

We give pseudo-code for implementing our update schema upon single change to the network, as described in Sec. III.

Given: A, a symmetric binary matrix corresponding to a simple graph.
Compute initial statistics:

N: number of nodes, M: number of edges;

k: degree vector, C: clustering coefficient vector, C̄: average clustering coefficient;

u ,v ,w ,r: assortativity coefficient and related statistics, as described in Sec. II;

(a) (b) (c)

FIG. 6. �Color online� Spy plot at three specific instances for the
adjacency matrix. The left panel corresponds to the initial network
�p1= p2=0.2 and pbetween=0.05�, where there is a clear community
structure. The middle panel corresponds to the time when pbetween

reaches 0.1 where the community structure becomes less apparent.
The right panel is the end of the growing process such that
pbetween=0.2 and the network is totally random with no community
structure.
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FIG. 7. �Color online� The evolution of modularity Q. Three red
squares correspond to the time instances that are shown in Fig. 6

DYNAMIC COMPUTATION OF NETWORK STATISTICS VIA… PHYSICAL REVIEW E 79, 036116 �2009�

036116-7



SA ,SP ,g ,K ,Q: modularity measure and related statistics, as described in Sec. II, and in Eq. �37�.
if a new node is added to the network without any connection then

C→ �C ;0�, C̄= N
N+1 C̄;

A→ �A ,0 ;0�;
N→N+1;

k→ �k ;0�.
else if a new edge is added between nodes p and q then

�1� Update C:

Set: �+C=0,

Let Npq denote the set of common neighbors of p and q, and

Set: Cp=Cp− 2
kp+1Cp+

2�Npq�
kp�kp+1� , �+C=�+C− 2

kp+1Cp+
2�Npq�

kp�kp+1� ,

Set: Cq=Cq− 2
kq+1Cq+

2�Npq�
kq�kq+1� , �+C=�+C− 2

kq+1Cq+
2�Npq�

kq�kq+1� ,

for every i�Npq do

Set: Ci=Ci+
2

ki�ki−1��
+C=�+C+ 2

ki�ki−1� ,

end for

Update the average clustering coefficient: C̄= C̄+ �+C
N .

�2� Update r:

Set: u=u+2��i�N�p�ki+�i�N�q�ki�+2�kp+1��kq+1�,
Set: v=v+4�kp+kq+1�,
Set: w=w+6�kp�kp+1�+kq�kq+1��+4,

Update the assortativity coefficient: r= 8�M+1�u−v2

4�M+1�w−v2 .

�3� Update Q:

Set: SA=SA+2��gp ,gq�,
Set: SP=SP+2�Kgp

+Kgq
�+2���gp ,gq�+1�,

Set: Kg=Kg+��gp ,g�+��gq ,g�,
Update the modularity measure: Q= 1

2�M+1� �SA− 1
2�M+1�SP�.

�4� Update elementary statistics:

Set: A�p ,q�=A�q , p�=1,

M→M +1,

Set: kp=kp+1, kq=kq+1.

else if an existing edge between nodes p and q is removed then

�1� Update C:

Set: �−C=0,

Let Npq denote the set of common neighbors of p and q, and

Set: Cp=Cp+ 2
kp−2Cp−

2�Npq�
�kp−1��kp−2� , �−C=�−C+ 2

kp−2Cp−
2�Npq�

�kp−1��kp−2� ,

Set: Cq=Cq+ 2
kq−2Cq−

2�Npq�
�kq−1��kq−2� , �−C=�−C+ 2

kq−2Cq−
2�Npq�

�kq−1��kq−2� ,

for every i�Npq do

Set: Ci=Ci−
2

ki�ki−1��
−C=�−C− 2

ki�ki−1� ,

end for

Update the average clustering coefficient: C̄= C̄+ �−C
N .

�2� Update r:

Set: u=u−2��i�N�p�ki+�i�N�q�ki�−2�kp−1��kq−1�,
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Set: v=v−4�kp+kq−1�,
Set: w=w−6�kp�kp−1�+kq�kq−1��−4,

Update the assortativity coefficient: r= 8�M−1�u−v2

4�M−1�w−v2 .

�3� Update Q:

Set: SA=SA−2��gp ,gq�,
Set: SP=SP−2�Kgp

+Kgq
�+2���gp ,gq�+1�,

Set: Kg=Kg−��gp ,g�−��gq ,g�,
Update the modularity measure: Q= 1

2�M−1� �SA− 1
2�M−1�SP�.

�4� Update elementary statistics:

Set: A�p ,q�=A�q , p�=0;

M→M −1;

Set: kp=kp−1, kq=kq−1.

end if
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